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ABSTRACT

The electronic properties of ZnO/CdS/Cu(In,Ga)Se2

(CIGS)/Mo/SLG polycrystalline thin-film solar cells with
compositions ranging from Cu-rich to In-rich were
investigated by deep level transient spectroscopy and
capacitance-voltage (C-V) measurements. This
compositional change represents the evolution of the
film during growth by the three-stage process. Four thin-
film CIGS samples with different Cu content were
obtained. The Cu/(In+Ga) ratio ranges from 1.24 (Cu-
rich) to 0.88 (In-rich), whereas the Ga/(In+Ga) ratio
ranges from 0.19 (Cu-rich) to 0.28 (In-rich). The Cu-rich
sample exhibits a shallow majority-carrier trap with an
activation energy of 0.12 eV and another deeper trap
with an activation energy of 0.28 eV, whereas the In-rich
sample has a shallow minority-carrier trap with an
activation energy of 0.12 eV. The two samples show
evidence of a deeper trap at higher temperature. C-V
measurements showed that the average carrier
concentration (N values) around the junction of the cell
changed as the film transitions from Cu-rich to In-rich.
DLTS shows that acceptor-like traps are dominant in
samples where CIGS grains did not go through the Cu-
rich to In(Ga)-rich transition. While donor-like traps are
dominant in the In(Ga)-rich samples.

INTRODUCTION

Polycrystalline thin-film solar cells based on
Cu(In,Ga)Se2 (CIGS) have the highest conversion
efficiencies for both small laboratory devices and large
modules—18.8% [1] and 12.1% [2]—respectively, of
any thin-film photovoltaic technology. The four elements
of this multinary polycrystalline film may form different
components as dictated by the phase equilibria. Even
though this multiplicity makes the material complicated,
CIGS nevertheless tolerates defects and impurities by
self-adjusting its chemistry and microstructure [3]. In
our laboratory, we are investigating the thin-film growth
mechanisms using our so-called “three-stage process.”
The electronic properties of thin-film CIGS devices made
from films as they transition from Cu-rich to In(Ga)-rich,
and for low Ga contents, are the subject of this work.
Devices made from these films were analyzed using
deep level transient spectroscopy (DLTS) and
capacitance-voltage measurements (C-V).

EXPERIMENTAL

The CIGS thin films were deposited by physical
vapor deposition in a multisource bell jar system. A
three-stage growth process was used for this deposition
(see Fig. 1). This process consists of: (1) the formation
of an (In,Ga)2Se3 layer on Mo-coated soda-lime glass
substrates heated to 400∞C; followed by (2) the

deposition of Cu and Se at about 550∞C, at which point
the compound formation and crystallization of
Cu(In,Ga)Se2 takes place with the additional formation of
Cu2-xSe as a secondary phase; and (3) the addition of
more In, Ga, and Se at the same temperature, so that
the final composition expected is slightly Cu-poor.

Our approach is to interrupt the film growth at
predetermined points along the film growth pathway. The
thin-film samples from which the devices were made are
labeled a through d and are indicated in Fig. 1. Sample a
is Cu-rich and Sample d is In(Ga)-rich. The compositions
are given in Table 1. The thin-film samples a, b, c, and d
were  treated by NaCN for about 5 min to remove the
Cu2-xSe secondary phase [4,5]. Devices were made from
these NaCN-treated thin-film samples. CdS was
deposited by CBD and ZnO, and the front contacts were
deposited by sputtering. Another device was made from
the untreated In-rich thin-film sample (which will be
referred to as d').  

RESULTS AND DISCUSSION

The electronic properties of ZnO/CdS/Cu(In,Ga)Se2

(CIGS)/Mo/SLG polycrystalline thin-film solar cells made
from samples a through d (where the film transitions
from Cu-rich to In(Ga)-rich) were investigated by DLTS
and C-V measurements. In our p-type CIGS material, an
electron (minority-carrier) trap is defined as the one
tends to be empty of electrons (minority carriers), and
thus capable of capturing them [6]. Similarly, a hole
(majority-carrier) trap is one that tends to be full of
electrons (minority carriers), and thus capable of having
a trapped electron recombine with a hole, i.e., capture a
hole [6]. For DLTS measurements, carriers are
introduced using a bias pulse, changing the electron
occupation of a trap. The junction capacitance
increases as the electron occupation of the trap
increases [6]. In this study, we used the DLTS
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technique to measure the activation energy (which is
approximately the energy distance from the conduction
or the valance band to the trap level) and the trap
concentration. The DLTS spectra measured with a
reverse voltage V=-0.4 V; trap-filling pulses of amplitude
V of 0.5 V; and a saturation pulse width of 1 ms are
shown in Fig. 2. Figure 2a shows the DLTS data for
samples a-d'. Table 2 summarizes the DLTS and C-V
data. For sample a, the signal shows a negative peak
(at a temperature of about 120 K), identifying the defect
A1 as a hole trap in the bulk of the Cu-rich CIGS. Also, it
shows a beginning of a positive peak (at a temperature
of about 300 K), identifying a defect D1 as a deeper
electron trap in the bulk of the Cu-rich sample. For
sample b, the signal shows a negative peak (at a
temperature of about 210 K), identifying a defect A2 as a
hole trap in the bulk of the near-stoichiometry CIGS
sample. For sample c, the signal shows a positive peak
(at a temperature of about 230 K), identifying a defect
D2 as an electron trap in the bulk of the less
stoichiometric CIGS. For sample d, the signal has two
positive peaks (at temperatures of about 120 and 260 K,
respectively), identifying the defects D3 and D4 as
electron traps in the bulk of In(Ga)–rich CIGS. For
sample d', the signal shows a positive peak (at a
temperature of about 230 K), identifying a defect D5 as
an electron trap in the bulk of the untreated In-rich
CIGS. The heights of the peaks in Fig. 2 are proportional
to their respective trap concentration [6]. Trap A1 in Fig.
2a (sample a) with a concentration of about 2.1x1014 cm-

3 yields the dominant emission in Cu-rich CIGS in the
observed temperature and frequency range. However,
trap D1 could not be resolved without heating the sample
above room temperature and possibly changing its
properties.   Traps A2  (sample b), D2 (sample c), and D5

(sample d') in Fig. 3a, with concentrations of 1.1e+13,

6.6e+11, and 1.4e+13 cm-3, respectively, yield the
dominant emission in the observed temperature and
frequency range.

Trap D3 (sample d) in Fig. 2a, with a concentration
of about 7.2x1013 cm-3, yields the dominant emission in
In(Ga)-rich CIGS in the observed temperature and
frequency range. Trap D4 (sample d) has a concentration
of 2.1X1012 cm-3, which is small compared to the
concentration of trap D3. From Fig. 2b, traps A1, and A2

exhibit activation energies of 0.12 and 0.28 eV (from the
valance band), respectively, whereas traps D2, D3, D4,
and D5 exhibit activation energies of 0.47, 0.12, 0.25,
and 0.63 eV (from the conduction band), respectively.
Figure 3a shows the C-V measurements for samples a-
d'. The average carrier concentrations (N values) for the
four samples were deduced from Fig. 2b. These
concentrations were found to be: 4.8x1016, 7.5x1015,
4.8x1015, 7.9x1016, 1.4x1016 cm-3 (for samples a, b, c, d,
and d' respectively-see Fig. 1). We see that the N
values change as the film transitions from Cu-rich
(sample a) to In(Ga)-rich (sample d).

Table 1. Compositions for Samples a-d', (') before NaCN
Treatment.

Sample # Cu/(In+Ga) Ga/(In+Ga)

 a'
a

1.24
1.02

0.19
0.19

b 0.95 0.24

c 0.93 0.26

d'
          d

0.90
0.90

0.28
0.28
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Table 2. Summary of DLTS and C-V Data for Samples (a-d').

Sample
#

Trap
Label

Approximate
Peak

Temperature
(K)

Activation
Energy (eV)

DLTS Peak Trapped
Carrier
Type

N (cm-3)
(from C-V)

# of
Traps
(cm-3)

a A1 110 0.12 negative Majority 4.8e+16 2.0e+14

b A2 210 0.28 negative Majority 7.5e+15 1.1e+13

C D2 230 0.47 positive Minority 4.8e+15 6.6e+11

D3 120 0.12 positive Minority 7.2e+13
d

D4 260 0.25 positive Minority 7.9e+15 2.1e+12

d' D5 230 0.63 positive Minority 1.4e+16 1.4e+13

           Fig 3b. [A/C]2 vs. applied voltage for samples   
           (a-d'). (A: area, C: capacitance)

Fig. 2a. DLTS data for samples (a-d'). (') before NaCN
treatment.
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From the discussion above, we see that acceptor-
like traps are dominant in samples a and b, while donor-
like traps are dominant in samples c, d, and d'. In
samples a and b, the Cu2-xSe phase exists on the
surface and between the grains of the CIGS before the
NaCN treatment [4,5]. We believe that the presence of
this phase triggers the generation of the majority of the
acceptor-like traps in these samples [4,5]. The transition
from Cu-rich to In(Ga)-rich causes an extensive
transformation of intrinsic defects such that donor-like
traps become dominant in the In(Ga)-rich films; c, d, and
d'. This transformation is manifested in the switching of
the DLTS peaks from negative DC in sample a  to

positive DC in sample d.

SUMMARY

We find that in the “three-stage process,” the
growth kinetics, substrate temperature profile, and
reaction time will make the outcome of local equilibria
unique to the growth process.  Cu content in CIGS thin
films is important for defect dynamics. Evolution of the
intrinsic native defects depends on the dynamics of the
reaction pathway, i.e., the compositional changes that
occur when the film transitions from Cu-rich to In(Ga)-
rich.  This method of fabricating CIGS thin films in our
laboratory and others, has demonstrated CIGS-based
thin-film devices with efficiencies approaching 19%.
From this study, we conclude that acceptor-like traps
are dominant in samples where CIGS grains did not go
through the Cu-rich to In(Ga)-rich transition. While
donor-like traps are dominant in the In(Ga)-rich samples.
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